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ABSTRACT. A theoretical analysis of the turbulent charac- 
I teristics o f  circular flow in a channel with an internal 

rotating cylinder is  presented, based.on the use o f  balance 
equations for pulsating energy for various directions of 
motion (whole and individual velocity components) , along 
with the ordinary equations o f  average motion. Examination 
o f  the supplementary equations leads to information par- 
ticularly on the distribution not only o f  average charac- 
teristics in the flow, but o f  pulsating ones as well. The 
results of the calculation are compared with experimental 
distributions o f  average velocity, pulse intensity, 
correlation, etc. 

I 

This report describes an attempt to analyze theoretically the turbulent /121* 
characteristics of circular flow in a channel with an internal rotating cylin- 
der, based on the use of equilibrium equations for pulsating energy in various 
directions of  motion. 
the experimental distribution of average velocity, pulse intensity, correla- 
tion, etc. 

Calculqted results are brought into comparison with 

A number of papers have been written on the theoretical analysis of 
turbulent current in channels between two coaxial rotating cylinders. 
majority are based on the supposition of small channel curvature [l, 21, and 
the others [3-51 use various methods of approximation. 
relatively satisfactory calculation of the distribution of average velocity 
in the stream and of friction. 

The 

These works permit 

More complete.information can be obtained if we use equilibrium equa- 
tions of pulsating energy (of the whole and of individual velocity components) 
along with the ordinary equations of average motion which are used. Examina- 
tion of these supplementary equations makes it possible to obtain information 
particularly about the distribution of not only the average characteristics 
in the stream, but also of the pulsating ones. 

*Numbers in the margin ._ indicate pagination in the foreign text. 
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1. Basic Equations. We w i l l  examine a plane c i r c u l a r  turbulent  flow 

of incompressible l i q u i d ,  s t a t i s t i c a l l y  uniform on cy l indr ica l  surfaces  

having a constant radius .  For such a flow, the  following re la t ionships  a r e  

f u l f i l l e d :  
. . .  . - .~ 

, 

while the  der iva t ives  f o r  coordinates x and + from t h e  averaged values equal 

zero. 

pulsat ing values of the  a x i a l ,  r a d i a l  and tangent ia l  components of the vector  

of ve loc i ty  and s t a t i c  pressure,  is  t h e  s ign  of average with time (per the  

Reynolds concept). 

Here o r x ) ,  {vr) , .(V4>. (P), vx” vr” v4 I ,  p a r e  t h e  averaged and 

Accounting f o r  these  expressions the  system of d i f f e r e n t i a l  equations 

f o r  the  c o r r e l a t i v e  tensor  component {vi1vj1) w i l l  have the form 

. .  . - .- .. . __ .. . . - . 

- ... . . . ~. 
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In t h e  system of equations (1.1) through (1 .6) ,  terms r e l a t e d  t o  con- 

vection t r a n s f e r  of  tu rbulen t  energy by average motion a r e  dropped, and a l s o  

those r e l a t e d  t o  viscous and turbulen t  d i f fus ion  [6-81. 1 

L 
I 

I 
1 

Following [6], using the  approximate semi-empirical r e l a t ionsh ip  f o r  /122 

I i 
d i s s ipa t ion  of pu lsa t ing  motion, 

. ,. . 
. A  

and f o r  energy exchange between d i f f e r e n t  pu lsa t ion  components 

Here E is  t h e  k i n e t i c  energy of  t he  pulsa t ions ;  2 i s  t h e  s c a l e  of t u r -  

bulence; c, c and k a r e  empirical  cofistants;, 6 i s  Kronecker symbol; 

i, j = 1, 2,  3 .  
1 

Replacing t h e  f i r s t  equation o f  t he  system ( l . . l ) - (1 .6)  by t h e  sum of 

t h e  first th ree  equations,  and the  second by t h e  sum of t h e  second and t h i r d  

equations; we convert it with considerat ion of equations (1.7) and (1.8) and 

the  designators  f o r  l oca l  c r i t e r i a 1  
. - - _. . , . -. . . . . . . 

1 Cr i t e r ion  

is  analogous t o  the  loca l  Reynolds c r i t e r i o n  
- 

12 d V J  R = - -  v dy 

. first introduced i n  the  works of L. G .  Loytsyanskiy [9]. 
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. t o  t h e  nondimensional form 
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( 1.. 1 o j 

(1.131 

Note t h a t  (1.9) represents  an equation of equilibrium of t h e  whole 

energy of turbulence i n  t h e  flow. As expected i n  t h i s  equation, generation 

and d i s s ipa t ion  of energy play a fundamental r o l e  i n  the  equilibrium of t u r -  

bulent  energy i n  t h e  approximation 'under examination. 

approximately i d e n t i c a l  over a l a rge  por t ion  of t&e channel c ross  -sect ion,  s o  

These values  a r e  
.- 

t h a t  turbulence i s  p r a c t i c a l l y  found i n  a s t a t e  of energy balance.  

System (1.9) through (1.14) cons i s t s  of  s i x  equations and contains  

e ight  unknown ({vi'v. '}, (v  ) and 2 ) .  
add.the equation f o r  average flow 

In t h i s  connection it is  necessary t o  
3 9 

1 
~ - . -  

- -.. - 
which weewri te ,  a f t e r  s i n g l e  in t eg ra t ion  and u t i l i z a t i o n  of t he  designat ions 

given e a r l i e r ,  

(1.15) 

and determine the  sca l e  of turbulence 2. . .  

Solving t h e  system of equations (1.9) - (1.14), we r e a d i l y  obta in  /123 
. . . . . .  

(1.16) 

... _ _  .... .. _ .  ........ .... .......... -~ ..... -. -.- - - .. - .... .. 
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(1.19) 

The left,and right-hand sides of  (1.20) represent the generation and 
dissipation of pulsation energy in abstract form. 

2. The Region o f  Friction Near the Channel Walls. Near the Channel 
, 

walls, the inequality {v6)/r Q d(vb)/dr is valid, and consequently Rwl Q RZ. 
Using these 
form 

I. 

We also .express through R R and q+ the values E' e i' 

- . ... 

Here 4 = <V@}/V*~; v*i = is the dynamic velocity, T ~ ,  T~ represent 
1 

the force of  friction on the rotating and stationary walis of  the channel: 

5 
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; (2.71 
! 

- (E i s  the  c o e f f i c i e n t  of turbulent  kinematic v i s c o s i t y ) ;  considering. '(2.4), 
' 

we obtain ! 
( 

8 ( c R E  +- el) RE' -- - 
R,? (2 8) Y 

r -  

"- In  t h e  region of turbulent  flow developing near the  walls, we wri'te /124 

. the  cor re la t ion  ( v ~ ' v + ~ ) ,  a f t e r  discarding t h e  component i n  (2.4) r e l a t e d  t o  

the  e f f e c t  of physical  v i s c o s i t y  (c = 0 ) ,  and using (2.5), as 1 

In  connection with the  fact that* t h e  scale of turbulence 2 i s  defined 

i n  (1.7) and (1.8) with accuracy up t o  a constant m u l t i p l i e r ,  on whose se lec-  

t i o n  t h e  values  of constants  k ,  c -and c depend, w e  t ake  [8] 1 
- -  

(2.10) % ( k / c -  1p 
--- - h3Jc =1 

_- - _-_ _ _  - - -  . - 
In  t h i s  case (2.9) agrees with t h e  known Prandt l  formula af ter  which one 

may a l s o  put 2 = ICY, where K = 0.4. Function (2.10) enables us t o  replace 

c o e f f i c i e n t s  k and c with t h e i r . r a t i o  k/c 
_ _  ---- - 

and a t  t h e  same time reduce the  quant i ty  of empiric'al constants.  - 
For ca lcu la t ion  of the  bas ic  c h a r a c t e r i s t i c s  of turbulent  c i r c u l a r  flow 

from (2.1) through (2.8) it is e s s e n t i a l  t o  e s t a b l i s h  the  funct ion of quanti-  
+ t i e s  RE, R 

obtained from (2.5), ca lcu la t ing  by (2.10)., has the  form 

and n .  t o  coordinate r( Here the  connection between F& and R e 1 i' e' 

(2.11) 

In  Figure 1 (Curves I and 11) t h e  r e s u l t s  of t h e  values of constants 

k/c = 7 and c1 = 2.45 as calculated by (2.11) are p l o t t e d  as se lec ted ,  as well 

as from [8] ,  which r e l a t e  t o  flow i n  a s t r a i g h t  tube.  __ - - .  

6 



a .  

.............. f__ _ _ _  ....... -. ..... .... ._._I.-.- _._ _._._ ._..-__.__l._. .. . . . . . .  .. 

... 

. .  

LgF ' "  
Subs t i tu t ing  the  value (vr'v '} 

from (2.4) i n  (1.15) and ca lcu la t ing  

(2 .11 ) ,  we convert it t o  the  form 
1 

4 

1 i 

1 ,." 
3U . .  

I 

Knowing t h e  connection between . 

c r i t e r i a  R e 
left-hand s i d e  of (2.12) i n  t h e  form 
of a function of  Re: 

and RE we present  t h e  
25 

I 

I - .- 
RE?(&; + el) 

= F (Rl )  (2.13) Rl 
R, -f- 

Figure  1 .  Cri ter ion R v s .  RE (Curves as shown i n  Figure 1 (Curve 111). 

I and I I )  and F (Curve 1 1 1 ) .  
e 

Then', f inding from c o r r e l a t i o n  

(2.14) 

t h e  d i s t r i b u t i o n  of c r i t e r i o n  R 

easy t o  c a l c u l a t e  from (2.1)-(2.8) t h e  rest of  t h e  c h a r a c t e r i s t i c s  of flow as 

well, including t h e  v e l o c i t y  p r o f i l e  near  the  wall. 

i n  t h e  cross  sec t ion  of t h e  channel, it i s  ' 2  

3 .  Turbulent Core o f  F l o w .  In  the  turbulen t  core of flow, i n  which 

motion i s  near t h e  p o t e n t i a l  circuTation [ S I ,  w e  adopt the  l a w  

(3.1) <vQ>r = cOv1rl = const (co 0.55)  

(vl i s  t h e  v e l o c i t y  of r o t a t i o n  of the  cy l inder ) ,  average eddying of flow 

1 /r (d{v4)r/dr) i s  extremely small, and consequently, one can propose 

On t h e  o ther  hand, i n  the turbulent  core of flow one can discard terms . /125 

r e l a t i n g  t o  the  motion of the force  of v i s c o s i t y  (cl  e 0 ) .  

(1.16)-(1.20) a r e  wr i t ten  

In t h i s  case, 

- 
- _.. . .  ............ . . . . . . . . . . . . . .  ..... ........ ..... ~ ... . . . . . . .  

7 



The equation f o r  average motion (1.5) f o r  tu rbulen t  core  of flow, after 

- s u b s t i t u t i n g  the  va lues(vr 'v  I )  and RE from (3;6) and (3.7),  w i l l  have the  
4 

form 

From (3.6) and '(3.7) we e a s i l y  obtain the  expression f o r  t h e  force  of 

f r i c t i o n :  

which f o r  (v 

obtained formula (2.9).  
/r Q d{v)/dr ( i n  t h e  s loping region) converts t o  t h e  previously 4) 4 

In accordance with [ l o ] ,  we propose t h a t  t he  s c a l e  of turbulence 2 i n  
-the developing turbulen t  c i r c u l a r  flow i s  proport ional  t o  rad ius  

. 

(3.11) 

Here the  constant  c1 is determined from (3.1),  (3.9),  and (3.10). 

Using (3.7)-(3.11) we wr i t e  (3.3)-(3.8) i n  the  f i n a l  form: 

- .  

8 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

- .  . .  
i 
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We will define the coefficient of turbulent viscosity from (3.10), 
I 

-substituting the value of 2 and .(v ) in it from (3.11) and (3.1) : ! + t 

I 
1 I 

i 

I 

- 1 (3.17) 

I i 
I 

E 1 Rf 
v 2co U I / V , l  

. -  
1 

- 
Integrating (3.9) with calculation of function (3.11), we obtain the /126 

1 I 

i 

I 

- 1 (3.17) 

I i 
I 

1 

- 
Integrating (3.9) with calculation of function (3.11), we obtain the /126 

~. .... 

-distribution of average velocity in the turbulent core of the stream 
1 
I . .  _ .  

Here Ro = v r /v; ni* = y*v,./v is the value of the common coodinate at 
the conditional boundary of transition layer r* = r + (-1) y*, (i = 1, 2): 
@* is the corresponding velocity of this boundary. 

i+l 1 1  
i 

4. Experimental Agreement. Comparison of the calculated functions 
with the results of experimental study of the hydrodynamic turbulent circular 
flow in channels with a central rotating cylinder [5., 113 is shown in Figures 
2 through 6. 

c 
1 

8 

2 & 6 
Figure 2. Averaged Curve of Abstract 
Velocity + ( n ) :  solid lines are calcu- 
lated values; 1 and I 1  are calculation 
by (3.18) for i = 1 and 2; 1 ,  3 are 
measurements near a rotating wall; 2, 
4 are the same near a stationary one. 

0 

.......... ; .... _I . -.-~ 

_ _  . .  

Figure 3 .  Distribution o f  Pulsation 
Intensity o f  the Tangential Velocity 
Component in the Channel Cross Section. 

- . -  . . . . . . . . . . .  
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Figure 4. Distribution of Total Figure 5. Distribution of the 
Energy of Turbulence (Curve I )  and 
Correlation in the Channel Cross in the Channel Cross Section: solid 
Section (Curve I I ) .  line--experimental; dotted line-- I 

Coefficient of Turbulent Viscosity 

calculated. 

In Figure 2 the universal curve 
of velocity 4 is illustrated, con- 
structed from (2.6) and (3.18), and 

it is in good agreement with the ex- 
- -  periment. Here, as in [SI, division 

of the flow into a laminar sublayer, Figure 6. Distribution of the Com- 
ponents of Equilibrium of Pulsation 
Energy in the Flow Region at the transition region and turbulent core 
Rotating Wall. Solid lines--theoreti- 
cal curves; 1, gene ra t ion - -d i s s ipa t ion ;  does not require special assumptions, 

. 2 ,  contribution to dissipation due to but is the outcome of the resultant 
effect.of viscosity on large scale 
pulsation motion. system of equations. 

I 

Distribution in the cross section of the channel of the pulsation in- 
tensity component of velocity vector v *, total turbulent energy E*, correla- ij 
tion v ** and coefficient of turbulent viscosity E / V ,  determined by (2.1)-(2.8) 
and (3.12)-(3.17) are also in complete satisfactory agreement with the experi- 
mental data (Figures 3-5). 

I i 

Figure 6 presents the distribution of balance components of pulsation 
energy near a rotating wall. An analogous picture occurs at a stationary wall. 
In addition to the good agreement of the calculated curve with the experimental 
one, note the close correspondence of the picture obtained of the distribution 
with the analogous picture in rectilinear flows. 

- - - . . - - - - - - -- 
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